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Boundary Conditions for Scalar Conservation Laws
from a Kinetic Point of View
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Boundary conditions for multidimensional scalar conservation laws are
obtained in the context of hydrodynamic limits from a kinetic point of view. The
initial boundary value kinetic problem is well posed since inward and outward
characteristics of the domain can be distinguished. The convergence of the first
momentum of the distribution function to an entropy solution of the conserva-
tion law is established. Boundary conditions are obtained. The equivalence with
the Bardos, Leroux, and Nedelec conditions is studied.

KEY WORDS: Hydrodynamic limits; multidimensional scalar conservation
laws; kinetic approach; Cauchy problem and boundary conditions; BV estimates.

1. INTRODUCTION

Defining boundary conditions for an initial boundary value problem of
general scalar conservation laws is not straightforward, since the ingoing
flux depends on the solution to the problem. In ref. 1, Bardos, Leroux, and
Nedelec studied the vanishing viscosity limit for the solution to the initial
boundary-value problem

{
�
�t

(u=(t, x))+divxA(u=(t, x))== 2u= , t>0, x # 0
(1)

u=(0, x)=u0(x), x # 0
u=(t, x)=w(t, x), t>0, x # �0
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Here 0 is a bounded subset of RN, A=(Ai)1�i�N is a C2 function, and
w is a given data. By a proper choice of test functions introduced by
Kruskov, (9) they proved that u= converges towards the unique solution u to

&|
0

|u0(x)&l | �(x) dx

&|
R+ |

0
[|u&l | �t�+sgn(u&l )(A(u)&A(l )) } {x�] dt dx

+|
R+ |

�0
sgn(w&l)(A(u)&A(l )) } n� dt dx�0 (2)

for any C 1 test function � with compact support in [0, T]_0� . Here n is
the outward normal to �0. Hence n satisfies an entropy inequality in 0,

�
�t

|u&l |+divx(sgn(u&l)(A(u)&A(l )))�0, l # R

together with an entropy inequality in �0,

(sgn(u&l )&sgn(w&l ))(A(u)&A(l )) } n�0, l # R. (3)

We shall refer to this last inequality as the (BLN) boundary condition.
Another approach for defining boundary conditions to scalar conser-

vation laws as well as hyperbolic systems in one dimensional space
variable, consists in using solutions to the Riemann problem.(4) Moreover,
multidimensional initial boundary value problems with strong linearities
are investigated in ref. 10. A number of studies has been made concerning
the following kinetic model for scalar conservation laws in RN,

�
�t

f=(t, x, v)+ :
N

i=1

ai (v)
�

�xi
f=(t, x, v)=

1
=

[/uf=
(t, x)(v)& f=(t, x, v)] (4)

where ai=Ai$, 1�i�N (see refs. 2, 6, 8, 11�13,...). Denote by

a(v)=(a1(v), a
*

(v)), a
*

(v)=(a2(v),..., aN (v))

and

u=(t, x)=|
R

f=(t, x, v) dv. (5)
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The unknowns u= , f= are defined for t�0, x=(x1 , y) # R+_RN&1, v # R,
and / is the signature function

/u=
(v)={sgn u0

0
if (u=&v)v�0
else

(6)

Notice that

u=(t, x)=|
+�

&�
/u=(t, x)(v) dv (7)

It is proved in ref. 13 that the first momentum u= converges towards the
unique entropy solution to

�
�t

u(t, x)+ :
N

i=1

�
�xi

Ai (u(t, x))=0, u(0, x)=u0(x). (8)

Here, we investigate the hydrodynamic limit of the solution to the initial
boundary value problem on 0 :=R+_RN&1 with a kinetic approach. We
study the solutions to

�
�t

f=(t, x, v)+ :
N

i=1

ai (v)
�

�xi
f=(t, x, v)=

1
=

[/uf=
(t, x)(v)& f=(t, x, v)]

t # (0, T ), x # 0, v # R
(9)

f=(0, x, v)= f0(x, v), x # 0, v # R

f=(t, (0, y), v)= f� (t, y, v), t # (0, T ), ((0, y), v) # 1 &

where

1=[0]_RN&1_Rv=�0_Rv , 1 &=[(x, v) # 1; a(v) } n(x)<0].

We prescribe the boundary condition only on the inflow part at x1=0 as
it is usual for linear transport equations. In a setting of hydrodynamic
limits, we obtain a set of admissible boundary states for

lim
= � 0 | f=(t, (0, y), v) dv.

The main result of the paper is the following

Theorem 1. Under some technical assumptions (of Proposition 4),
the function u=(t, x)=�R f=(t, x, v) dv converges (up to a subsequence) in
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L�(0, T; L1
loc(0)) to a function u # L�(0, T; BV(0)) which is a weak solu-

tion of the scalar conservation law

�u
�t

+ :
N

i=1

�
�xi

Ai (u)=0, (t, x) # (0, T )_0

u(0, x)=u0(x), x # 0

in the sense that for all nonnegative function � # C1
0([0, T]_0),

&|
T

0
|

0
|u&l | �t �+sgn(u&l )(A(u)&A(l)) } {x� dx dt

+|
T

0
|

1 &
a(v) } n | f� &/l | � dv dx dt�0.

In particular, u satisfies the following entropy inequality on the boundary
�0,

sgn(u&l )(A(u)&A(l )) } n&|
a(v) } n<0

a(v) } n | f� &/l | dv�0, l # R.

If the boundary data f� is at equilibrium, i.e., f� (t, x, v) :=/w(t, x)(v) for some
function w, this condition becomes

sgn(u&l )(A(u)&A(l )) } n

&sgn(w&l )((A } n)& (w)&(A } n) & (l )�0, l # R

which is the (BLN) condition for the data w.
For some f� not at equilibrium, the boundary condition for u is the

(BLN) condition for w~ defined by

|
a(v) } n(x)<0

a(v) } n(x) /w~ (v) dv=|
a(v) } n(x)<0

a(v) } n(x) f� (v) dv.

Finally, u is unique in both cases.
Here

(A } n)& (x)&(A } n) & ( y) :=|
x

y
min(a(v) } n, 0) dv, (x, y) # R2.

Let us briefly explain our method. First, we prove the well posedness
of (9) and state BV estimates of the solution. Then we study the
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hydrodynamic limit and prove that it satisfies the scalar conservation law
together with an entropy inequality. Finally, in Sections 4 and 5, we study
the boundary condition, first in the case of equilibrium, then in a specific
case of boundary data out of equilibrium.

2. THE KINETIC PROBLEM

The following study is closely related to the work by Perthane and
Tadmor.(13) However, the boundary condition must be studied specifically.
We define the sets Q, Q& and Q+ respectively by

Q=0_Rv , Q&=[(t, x, v) # (0, T )_Q; x1&ta1(v)<0]

Q+=[(t, x, v) # (0, T )_Q; x1&ta1(v)>0].

Let L1
a1

(1 &) be the set of integrable functions on 1 & with the weight a1(v).

Theorem 2. If

f0 # L1(Q), f� # L�(0, T ; L1
a1

(1 &))

then the problem

{
�t f=+a(v) } {x f==

1
=

[/u=
& f=], t # (0, T ), x1>0, y # RN&1, v # R

f=(t, (0, y), v)= f� (t, y, v), t # (0, T ), y # RN&1, a1(v)>0 (10)
f=(0, x, v)= f0(x, v)

has a unique solution in L�(0, T ; L1(Q)). This solution satisfies

f=(t, x, v)= f0(x&ta(v), v) e&t�=

+
1
= |

t

0
/u=(s, x+(s&t) a(v))(v) e(s&t)�= ds, (t, x, v) # Q+

(11)

f=(t, x, v)=e&x1 �=a1(v) f� \t&
x1

a1(v)
, y&

x1

a1(v)
a

*
(v), v+

+
1
= |

t

t&x1 �a1(v)
/u=(s, x+(s&t) a(v))(v) e(s&t)�= ds, (t, x, v) # Q& .

Moreover, if f0�0 and f� �0, then f=�0 almost everywhere.
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Let f= and g= be two solutions of (10) corresponding respectively to the
data ( f0 , f� ) and ( g0 , g~ ). Then for almost every t # (0, T ),

& f=(t, } , } )& g=(t, } , } )&L1(Q)

�(e+1) \& f0& g0&L1(Q)+|
t

0
|

1&
| f� ({, y, v)& g~ ({, y, v)| a1(v) d{ dy dv+ .

(12)

The proof of Theorem 2 is easy. It relies on a Banach fixed point argument
in L�(0, T ; L1(Q)).

3. A PRIORI ESTIMATES

3.1. L� and L1 Bounds

Proposition 3. (i) If f0 # L�(Q) and f� # L�((0, T )_1 &), then
f= # L�((0, T )_0_Rv) and

& f=&L��max(& f0&L� , & f� &�)+1.

(ii) If f0 # L1(Q), and f� # L1(0, T ; L1
a1

(1 &)), then u= # L�(0, T ; L1(0))
and

&u=&L�(0, T ; L1(0))�2(& f0&L1(Q)+& f� &L1(0, T ; L1
a1

(1&))).

(iii) If

sup
(t, x) # (0, T )_0

|
x1&ta1(v)>0

| f0(x&ta(v), v)| dv<� (13)

and

sup
(t, x) # (0, T )_0

|
x1&ta1(v)<0 } f� \t&

x1

a1(v)
, y&

x1

a1(v)
a

*
(v), v+} dv<� (14)

then (u=) is uniformly bounded in L�((0, T )_0).

Proof of Proposition 3. (i) relies on explicit computations and a
Gronwall argument.

784 Nouri et al.



(ii) Denote by U=(t) :=�0 u=(t, x) dx. Then

U=(t)�e&t�= & f0&L1(Q)+|
x1&ta1(v)<0

e&x1 �a1(v)

_} f� \t&
x1

a1(v)
, y&

x1

a1(v)
a

*
(v), v+} dv dx+|

t

0

1
=

e(s&t)�=U=(s) ds

�e&t�= & f0&L1(Q)+|
t

0

1
=

e(s&t)�= |
1 &

| f� (s, Y, v)| a1(v) dY dv ds

+|
t

0

1
=

e(s&t)�=U=(s) ds

by the change of variables (x1, y) � (s :=t&x1 �a1(v), Y := y&(x1 �
a1(v)) a

*
(v)) in the second integral. (ii) follows by a Gronwall argument.

(iii) Denote by

A(t, x) :=[(s, v) # (0, T )_R; x1&ta1(v)>0, 0<s<t]

_ {(s, v) # (0, T )_R; x1&ta1(v)<0, t&
x1

a1(v)
<s<t=

Then

|u=(t, x)|�|
A(t, x)

|/u=(s, x+(s&t) a(v))(v)|
1
=

e(s&t)�= ds dv

+|
x1&ta1(v)>0

| f0(x&ta(v), v)| dv

+|
x1&ta1(v)<0 } f� \t&

x1

a1(v)
, y&

x1

a1(v)
a

*
(v), v+} e&x1 �=a1(v) dv

Denote by V=(t) :=&u=(t, } )&L�(0) . Then

V=(t)�|
t

0

1
=

e(s&t)�=V=(s) ds+c

by Assumptions (14) and (15). And so, (ii) follows by a Gronwall argument.

3.2. Finite Speed of Propagation

Let us assume that f0 and f� are compactly supported in v and that
Assumptions (14) and (15) hold. Denote by u� :=sup=>0 &u=&L�((0, T )_0) .
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The function /u=
in the right-hand side of (11) is supported in [&u� , u�].

It then follows that f= given by (11) has its support included for all
t # (0, T ) in

K :=suppv( f0) _ suppv( f� ) _ [&u� , u�].

Denote by

a� := sup
1�i�N, v # K

|ai (v)| .

Then

a�� sup
1�i�N, v # K$

|ai (v)| (15)

where

K$=[v # suppv( f=(t, x, } ), (t, x) # (0, T )_R+_RN&1].

3.3. BV Estimates

Proposition 4. Assume that (14) and (15) hold and that f0 and f�
are functions compactly supported in v, such that

f0 # L1(Rv ; BV(0))
(H1)

f� # (L� & BV )((0, T )_R+_RN&1; L1
a1

([v; a1(v)>0])).

Assume moreover that

|
0<x1<h, v # R

| f0(x, v)| dx dv�ch, h # (0, 1) (H2)

|
x1>0, x1&ha1(v)>0

| f0(x&ha(v), v)& f0(x, v)| dx dv�ch, h # (0, 1) (H3)

|
a1(v)>0, 0<s<h�a1(v)

| f� (s, y, v)| a1(v) ds dy dv�ch, h # (0, 1) (H4)

|
a1(v)>0, h�a1(v)<s<t } f� \s&

h
a1(v)

, y&
h

a1(v)
a

*
(v), v+& f� (s, y, v)}

_a1(v) ds dy dv�ch, h # (0, 1). (H5)

Then ( f=) is uniformly bounded in BV((0, T )_0; L1(Rv)).
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Proof of Proposition 4. First Step. Let us first consider the case
of the translation along xj , j{1. For g=(t, x1 , y, v) := f=(t, x1 , y+hej , v),
j�2 in (12), we obtain

|
Q

| f=(t, x1 , y+hej , v)& f=(t, x1 , y, v)| dx dv

�(e+1) \|Q
| f0(x1 , y+hej , v)& f0(x1 , y, v)| dx dv

+|
t

0
|

1 &
| f� ({, y+hej , v)& f� ({, y, v)| a1(v) d{ dy dv+

so that

"�f=

�xj
(t, } , } )"M(0_Rv)

�(e+1) \"�f0

�xj"M(0_Rv)

+" �f�
�xj"M((0, T )_1 &

a1
)+ .

Here, M(X ) denotes the set of bounded measures on X.

Second Step. Let us consider the case of the x1 translation. For the
sake of simplicity, restrict to the case where N=1, so that f= depends on
one space variable x # R+. Let h>0 be given. By the analytic expression
(11) of f= ,

| | f=(t, x+h, v)& f=(t, x, v)| dx dv

�|
A

|/u=(s, x+h+(s&t) a(v))(v)&/u=(s, x+(s&t) a(v))(v)|
1
=

e(s&t)�= ds dx dv

+I1+ } } } +I7

where

A :=[x>0, x&ta(v)>0, 0<s<t)]

_ {x+h&ta(v)<0, t&
x

a(v)
<s<t=

_ {&h<x&ta(v)<0, t&
x

a(v)
<s<t=

I1 :=|
x+h&ta(v)<0, t&(x+h)�a(v)<s<t

|/u=(s, x+h+(s&t) a(v))(v)|
1
=

e(s&t)�= ds dx dv
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I2 :=|
&h<x&ta(v)<0, 0<s<t&s�a(v)

|/u=(s, x+h+(s&t) a(v))(v)|
1
=

e(s&t)�= ds dx dv

I3 :=|
x&ta(v)>0

| f0(x+h&ta(v), v)& f0(x&ta(v), v)| e&t�= dx dv

I4 :=|
x+h&ta(v)<0 } f� \t&

x+h
a(v)

, v+& f� \t&
x

a(v)
, v+} e&(x+h)�=a(v) dx dv

I5 :=|
x+h&ta(v)<0 } f� \t&

x
a(v)

, v+} (e&x�=a(v)&e&(x+h)�=a(v)) dx dv

I6 :=|
&h<x&ta(v)<0

| f0(x+h&ta(v), v)| dx dv

I7 :=|
&h<x&ta(v)<0 } f� \t&

x
a(v)

, v+} e&x�=a(v) dx dv.

By the change of variables x � X :=x+(s&t) a(v),

|
A

|/u=(s, x+h+(s&t) a(v))(v)&/u=(s, x+(s&t) a(v))(v)|
1
=

e(s&t)�= ds dx dv

�|
B

|/u=(s, X+h)(v)&/u=(s, X )(v)|
1
=

e(s&t)�= ds dX dv

with

B :=[X>0, X&sa(v)>0, 0<s<t]

_ [X+h&sa(v)<0, X>0, 0<s<t]

_ [X+h&sa(v)>0, X&sa(v)<0, 0<s<t].

Hence,

|
A

|/u=(s, x+h+(s&t) a(v))(v)&/u=(s, x+(s&t) a(v))(v)|
1
=

e(s&t)�= ds dx dv

�|
0<s<t, X�0, v # R

|/u=(s, X+h)(v)&/u=(s, X )(v)|
1
=

e(s&t)�= ds dX dv

=|
t

0

1
=

e(s&t)�= |
X�0

|u=(s, X+h)&u=(s, X )| dX ds

�|
t

0

1
=

e(s&t)�= | f=(s, x+h, v)& f=(s, x, v)| dx dv ds.
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Then, by the change of variables x � X :=x+(s&t) a(v),

I1�|
X&sa(v)>0, a(v)>0, 0<X<h, 0<s<t

|/u=(s, X )(v)|
1
=

e(s&t)�= ds dX dv

�|
0<X<h, 0<s<t

|u=(s, X )|
1
=

e(s&t)�= ds dX�h &u=&L�((0, T )_0) .

Then, by the change of variables x � X :=x+h+(s&t) a(v),

I2�|
0<X&sa(v)<h, 0<s<t, X<h

|/u=(s, X )(v)|
1
=

e(s&t)�= ds dX dv

�|
0<X<h, 0<s<t

|u=(s, X )|
1
=

e(s&t)�= ds dX�h &u=&L�((0, T )_0) .

Then, by the change of variables x � X :=x&ta(v),

I3�|
X>0, v # R

| f0(X+h, v)& f0(XC, v)| dX dv�ch

since f0 belongs to L1 (Rv ; BV(0)). Then, by the change of variables
x � s :=t&x�a(v),

I4�|
a(v)>0, h�a(v)<s<t } f� \s&

h
a(v)

, v+& f� (s, v)} a(v) ds dv�ch

by (H5). Then by the same change of variables as for I4 ,

I5=|
h&sa(v)<0

| f� (s, v)| e(s&t)�=(1&e&h�=a(v)) a(v) ds dv

�h |
h&sa(v)<0, 0<s<t

| f� (s, v)|
1
=

e(s&t)�= ds dv�h & f� &L�(0, T ; L1
a1

(1 &))

Then, by the change of variables x � X :=x+h&ta(v),

I6=|
0<X<h, v # R

| f0(X, v)| dX dv<ch
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by (H2). Then, by the same change of variables as for I4 ,

I7=|
a(v)>0, 0<s<h�a(v)

| f� (s, v)| a(v) ds dv�ch

by (H4). And so,

| | f=(t, x+h, v)& f=(t, x, v)| dx dv

�ch+|
t

0

1
=

e(s&t)�= | | f=(s, x+h, v)& f=(s, x, v)| dx dv ds

which proves that

| | f=(t, x+h, v)& f=(t, x, v)| dx dv�ch, t # (0, T )

by a Gronwall argument.

Third Step. The proof of the uniform boundedness of ( f=) in
BV((0, T ); L1(0_Rv)) is analogous to the previous proof. Indeed, for
h>0,

|
T&h

0
|

x�0, v # R

| f=(t+h, x, v)& f=(t, x, v)| dt dx dv�ch

by bounding from above �x�0, v # R | f=(t+h, x, v)& f=(t, x, v)| dx dv by

|
C

|/u=(s+h, x+(s&t) a(v))(v)&/u=(s, x+(s&t) a(v))(v)|
1
=

e(s&t)�= ds dx dv

+J1+ } } } +J7

where

C :=[x&ta(v)>0, x&(t+h) a(v)>0, 0<s<t]

_ {x&ta(v)<0, t&
x

a(v)
<s<t=

_ [0<x<ta(v)ha(v), 0<st]
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and

J1 :=|
x&ta(v)>0, x&(t+h) a(v)>0

| f0(x&(t+h) a(v), v)& f0(x&ta(v), v)|

_e&(t+h)�= dx dv

J2 :=(1&e&h�=) e&t�= |
x&ta(v)>0, x&(t+h) a(v)>0

| f0(x&ta(v), v)| dx dv

J3 :=|
x&ta(v)<0 } f� \t+h&

x
a(v)

, v+& f� \t&
x

a(v)
, v+} e&x�=a(v) dx dv

J4 :=|
0<x&ta(v)<ha(v)

| f0(x&ta(v), v)| dx dv

J5 :=|
0<x&ta(v)<ha(v) } f� \t+h&

x
a(v)

, v+} e&x�=a(v) dx dv

J6 :=|
x&ta(v)>0, x&(t+h) a(v)>0, &h<s<0

|/u=(s+h, x+(s&t) a(v))(v)|

_
1
=

e(s&t)�= ds dx dv

J7 := 0<x&ta(v)<ha(v), 0<s<t&x�a(v) |/u=(s, x+(s&t) a(v))(v)|
1
=

e(s&t)�= ds dx dv.

Then, by the change of variables x � X :=x+(s&t) a(v),

|
C

|/u=(s+h, x+(s&t) a(v))(v)&/u=(s, x+(s&t) a(v))(v)|
1
=

e(s&t)�= ds dx dv

�|
t

0

1
=

e(s&t)�= |
X�0

|u=(s+h, X )&u=(s, X )| dX ds

�|
t

0

1
=

e(s&t)�= |
X�0, v # R

| f=(s+h, X, v)& f=(s, X, v)| dX dv ds.
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Moreover,

J1+J3+J4+J5�ch

by assumption, and

J2+J6+J7�c
1
=

e&t�=h

so that

|
T

0
(J2+J6+J7)(t) dt�ch.

4. HYDRODYNAMIC LIMITS

This section is devoted to the first part of the proof of Theorem 1,
stated in the introduction. The following proposition and lemma are
preliminarily proven.

Proposition 5. Assume that the assumptions of Proposition 4
hold. Then

& f=&/u=
&L1((0, T )_0_Rv)�=m

where m is some constant only depending on f0 and f� .

Proof of Proposition 5. The proof of Proposition 5 follows from the
equality

& f=&/u=
&L1((0, T )_0_Rv)== "�f=

�t
+a(v) } {x f="M((0, T)_0_Rv)

as well as (16) and the BV estimates of ( f=) established in Proposition 4.

Lemma 6. Let , be a nonnegative test function in C 1
0([0, T]_0� ).

Then

|
T

0
|

0_R

(/u=
& f=) sgn( f=&/l) , dx dt dv�0.
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Proof of Lemma 6.

|
R

(/u=
& f=) sgn( f=&/l) dv

=|
R

[(/u=
&/l)&( f=&/l)] sgn( f=&/l) dv

�|
R

|/u=
&/l | dv&|

R

| f=&/l | dv

=|u=&l |&|
R

| f=&/l | dv

= }|R

( f=&/l) dv}&|
R

| f=&/l | dv�0 K

Then Lemma 5 follows from the non-negativity of the test function ,(t, x).

Proof of Theorem 1. First Step. The Entropy Inequality. The proof
follows the lines of ref. 13. The solution f= to (10) satisfies also

�
�t

( f=&/l)+a(v) } {x( f=&/l)

=
1
=

(/u=
& f=), (t, x, v) # (0, T )_0_R

f=(t, x, v)= f� (t, x, v), t # (0, T ), (x, v) # 1 &

for any real number l. For a nonnegative test function .=.(t, x, v), with
compact support in ]0, T[_R+_RN&1, the weak formulation of the
kinetic problem is

&|
T

0
|

0_R

[(�t+a(v) } {x).]( f=&/l)+|
T

0
|

1 &
a(v) } n( f� &/l).

+|
T

0
|

1+
a(v) } n( f=&/l).=

1
= |

T

0
|

0_R

(/u=
& f=)., l # R.

Define the test function . by .(t, x, v)=sgn&( f=&/l) �(t, x), where � is a
nonnegative test function and sgn& a regularization of the sign function,
such that

x sgn&(x)�0, x # R.
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Taking into account that

[(�t+a(v) } {x).]( f=&/l)=[(�t+a(v) } {x)�][sgn&( f=&/l)]( f=&/l)

+[(�t+a(v) } {x)( f=&/l)] �(sgn&)$ ( f=&/l)

=[(�t+a(v) } {x)�][sgn&( f=&/l)]( f=&/l)

+
/u=

& f=

=
�[(sgn&)$ ( f=&/l)]( f=&/l)

we get

&|
T

0
|

0_R

[(�t+a(v) } {x)�][sgn&( f=&/l)]( f=&/l)

+|
T

0
|

1 &
a(v) } n[sgn&( f� &/l)]( f� &/l)�

=&|
T

0
|

1 +
a(v) } n[sgn&( f=&/l)]( f=&/l)�

+|
T

0
|

0_R

/u=
& f=

=
[sgn&( f=&/l)]�

+|
T

0
|

0_R

/u=
& f=

=
�[(sgn&)$ ( f=&/l)]( f=&/l).

The first term in the righty-hand side is nonpositive since a(v) } n�0 on 1 +

and x sgn&(x)�0, x # R. Passing to the limit with the regularization
parameter &, the last term vanishes, so that

&|
T

0
|

0_R

[(�t+a(v) } {x)�] | f=&/l |+|
T

0
|

1 &
a(v) } n | f� &/l | �

�|
T

0
|

0_R

/u=
& f=

=
sgn( f=&/l)�.

By Lemma 6, the term in the right-hand side is nonpositive. And so,

&|
T

0
|

0_R

[(�t+a(v) } {x)�] | f=&/l |+|
T

0
|

1 &
a(v) } n | f� &/l | ��0.
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It follows from Proposition 5 that

&|
T

0
|

0_R

[(�t+a(v) } {x)�] |/u=
&/l |

+|
T

0
|

1 &
a(v) } n | f� &/l | ��R=(�)

with lim= � 0 R=(�)=0. And so,

&|
T

0
|

0
|u=&l| �t �&|

T

0
|

0
sgn(u=&l)(A(u=)&A(l)) } {x�

+|
T

0
|

1 &
a(v) } n | f� &/l | ��R=(�).

Passing to the limit when = � 0 in the previous equation leads to

&|
T

0
|

0
|u&l| �t�+sgn(u&l)(A(u)&A(l) } {x�

+|
T

0
|

1&
a(v) } n | f� &/l | ��0 (16)

for any test function �(t, x), with � nonnegative and supported in
]0, T[_0. Note that Helly's theorem on BV function makes possible this
limit (up to a subsequence) since we have uniform bounds of (u=) in
BV((0, T )_0).

Boundary Condition. By the inequality (16), u satisfies the con-
servation law and its entropy inequality in 0. Moreover, on �0,

sgn(u&l)(A(u)&A(l)) } n&|
1 &

a(v) } n | f� &/l | dv�0, l # R (K)

Let us refer to this last inequality as the (K) condition. In the particular
case of an equilibrium datum at the boundary, i.e., when f� (t, x, v) :=
/w(t, x)(v) for some function w(t, x), the condition (K) becomes

sgn(u&l)(A(u)&A(l)) } n

&sgn(w&l)((A } n)& (w)&(A } n)& (l))�0, l # R (KE)

Finally, the uniqueness of u follows from the result of uniqueness in the
Bardos, Leroux and Nedelec context.(1)
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5. THE KINETIC BOUNDARY CONDITION VERSUS THE (BLN)
CONDITION

5.1. The Equilibrium Case

We consider the case where f� =/w , for some function w.

Proposition 7. (i) If u satisfies the (BLN) condition (3), then u
also satisfies the (KE) condition.

(ii) Conversely, if u satisfies the (KE) condition, and if (A } n) is non
degenerated in the sense that (A } n)" keeps a constant sign, then u also
satisfies the (BLN) condition (3).

Proof of Proposition 7. For simplicity let us denote by

g(z) :=(A } n)(z), g&(z) :=(A } n)& (z), g+(z) := g(z)& g&(z)

First Step. Recall that the (BLN) condition (3) is equivalent to

sgn(u&l )( g(u)& g(l))�0, l # I(u, w) (17)

where I(u, w) :=[z # R; z=%u+(1&%)w, 0�%�1].

Second Step. Let us prove that the (KE) condition is equivalent to

sgn(u&l )( g(u)& g(l))�sgn(w&l)( g&(w)& g&(l)), l # I(u, w) (18)

To this end, we only need to prove that taking l � I(u, w) in (KE) does not
bring more information than (18). Let us first consider l�max(u, w) in
(KE), so that

g&(w)& g&(l)� g(u)& g(l), l�max(u, w)

This is equivalent to

g&(w)+ g+(l)� g(u), l�max(u, w).

Taking into account that g+ is non decreasing, this comes back to

g&(w)+ g+(max(u, w))� g(u).

Analogously, for l�min(u, w),

g&(w)+ g+(min(u, w))� g(u).
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And so, the condition (KE) for l � I(u, w) reduces to

sgn(u&w)( g(u)& g(w))�0.

This last inequality is also obtained by taking l=w in (19), which finally
proves that the (KE) condition is equivalent to (18).

Third Step. The (BLN) condition implies the (KE) condition, since

sgn(w&l)( g&(w)& g&(l))�0

g& being non increasing.

Fourth Step. Let us prove that the (KE) condition implies the
(BLN) condition, under the additional requirement that g$ is either non
decreasing or non increasing. We first look for u�w satisfying (18).

Taking l=w in (18), we get that g(u)� g(w). Note also that the (BLN)
condition reduces then to g(u)� g(l) for any l such that w�l�u.

v Let us suppose that g$(w)�0, and let

w1=sup
z�w

[z; g(z)= g(w)]

Since g is non-degenerated, if w1>w, we have g$(u)�0 for any u�w1 and
the (KE) condition is only true for any u�w1 . Note that in this case the
(BLN) condition is also true. If w1=w, g(u)< g(w) for any u>w, so that
the (KE) condition and the (BLN) condition are both equivalent to u=w.

v We suppose now that g$(w)>0. Either g$(u)�0, for any u�w and
the conditions (KE) and (BLN) both reduce to u�w. Or g has a maxi-
mum g1<+� on [w, +�[. Let w1<+� be the greatest real w1>w,
such that g(w1)= g1 . Then g$(u)�0, for any u # [w, w1]. It follows that
g&(w1)= g&(w). Clearly the (BLN) condition reduces to u # [w, w]. Con-
sequently the (KE) condition is true for u # [w, w1]. If there were some
u>w1 satisfying the (KE) condition, then for l=w1 , g(u)� g(w1).
Moreover, g(u)� g(w). This contradicts the inequality g$(z)�0 for any
z>w1 . It follows that the (KE) condition implies the (BLN) condition for
u�w. The case where u<w can be analyzed similarly.

Remark 8. The hypothesis on the non degeneracy of (A } n) is
essential in our proof. Otherwise, the set given by the (KE) condition can
be strictly bigger than the set given by the (BLN) condition.
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Remark 9. The same result also holds and the proof is simpler if
(A } n) is either non-decreasing or non-increasing.

We can state the following corollary to Theorem 1.

Corollary 10. Assume that the boundary data f� is at equilibrium,
i.e., f� (t, x, v)=/w(t, x)(v) for some function w, that the assumptions of
Proposition 3 hold, and (A } n) is non-degenerated or non-increasing, or
non-decreasing. Then the family (u=) converges in L�(0, T ; L1

loc(0)) to the
entropy solution of the mixed problem (2) with the (BLN) condition for
the data w.

Proof of Corollary 10. The proof consists in applying Theorem 1
together with the results of Proposition 7. We conclude easily since the
solution of (2) is unique. K

5.2. A Case far from Equilibrium

In this section, we prove the second part of Theorem 1, stated in the
introduction, by discussing the case of the following particular boundary
data on the kinetic side

f� (t, x, v)= 1
2 (/w1

(v)+/w2
(v)) (19)

where w1 and w2 are two positive constants such that w1<w2 . Let us
exactly compute the boundary condition. We use the same notations as in
the previous section ( g(z) :=(A } n)(z) and g&(z) :=(A } n)& (z)). A direct
computation gives

|
1 &

a(v) } n | f� &/l | dv

=| min(0, g$(v)) | 1
2 (/w1

+/w2
)&/l | dv

g&(l )& 1
2 ( g&(w1)+ g&(w2)) if l>w2

=G(w1 , w2 ,l) :={ 1
2 ( g&(w2)& g&(w1)) if w2�l�w1

1
2 ( g&(w1)+ g&(w2))& g&(l ) if l<w1

Hence the boundary condition (K) becomes

sgn(u&l)( g(u)& g(l))�G(w1 , w2 , l), l # R (20)
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Proposition 11. If (A } n) is non degenerated, or non increasing or
non decreasing, then the kinetic boundary condition (21) is equivalent to
the (BLN) condition for the data w~ defined by

|
a(v) } n(x)<0

a(v) } n(x) /w~ (v) dw=|
a(v) } n(x)<0

a(v) } nf� (v) dv

Remarks. This former equality of inward fluxes, defining the state w~ ,
is used in numerical studies when coupling kinetic and fluid equations.(3)

In general w~ is different from the average of f� (x, t, v),

w~ {| f� (t, x, v) dv= 1
2 (w1+w2)

Corollary 12. The initial boundary-value problem

�u
�t

+divx(A(u))=0, (t, x) # (0, T )_R+_RN&1

u(0, x)=u0(x), x # R+_RN&1

Condition (K), t # (0, T ), x=(0, y) # R+_RN&1

has a unique solution.

Proof of Corollary 12. The existence of a solution to such a problem
has been proven in Section 4. Its uniqueness follows from Proposition 11
and the uniqueness of the solution to the problem

�u
�t

+divx(A(u))=0, (t, x) # (0, T )_R+_RN&1

u(0, x)=u0(x), x # R+_RN&1

(BLN) for the data w~ , t # (0, T ), x=(0, y) # R+_RN&1

Proof of Proposition 11. Let us denote by

g&
1 := g&(w1), g&

2 := g&(w2), g� & := 1
2 ( g&

1 + g&
2 )

First Step. Taking successively l<min(u, w1) :=m1 and l>
max(u, w2) :=m2 implies, as in the second step of the proof of Proposition 7,
that the (K) condition (21) is equivalent to
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(i) sgn(u&l)( g(u)& g(l))�G(w1 , w2 , l), l # [m1 , m2]

and (21)

(ii) g� &+ g+(m1)� g(u)� g� &+ g+(m2)

Let us also remark that G(w1 , w2 , l)�0 for any l # R.

Second Step. We suppose that g is non-decreasing, thus we can take
g+= g and g&=0. Hence G(w1 , w2 , l)=0 and the (K) condition becomes

sgn(u&l)( g(u)& g(l))�0, l # R

which is always true and equivalent to the (BLN) condition for any data w~ .
That means that the flow is outward and no boundary condition is needed
neither for the (K) case nor for the (BLN) case. Evidently, any data w~ is
solution to

g&(w~ )= 1
2 ( g&(w1)+ g&(w2))

i.e.,

|
a(v) } n<0

a(v) } n/w~ (v) dv=|
a(v) } n<0

a(v) } nf� (v) dv.

Third Step. We suppose that g is non-increasing, thus we can take
g+=0 and g&= g. The (BLN) condition for the data w is equivalent to
u=w. By (21)(ii), g� &= g(u). Omitting the special case where g is constant
on a set of non null measure in [w1 , w2], we get u= g&1( g� &). And so,
unless g is linear in [w1 , w2], u=w~ with w~ { 1

2 (w1+w2). Moreover, (22)(i)
comes back to

g(u)� 1
2 ( g(w1)+ g(w2)), l # [w1 , u]

g(u)� 1
2 ( g(w1)+ g(w2)), l # [u, w2]

so is satisfied. Thus the (K) condition is equivalent to the (BLN) condition
for the data w~ . Moreover, w~ can also be defined by the condition

g&(w~ )= 1
2 ( g&(w1)+ g&(w2))

i.e.,

|
a(v) } n<0

a(v) } n/w~ (v) dv=|
a(v) } n<0

a(v) } nf� (v) dv.
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Fourth Step. We now study the case g convex, with g non-increasing
for l�w* and non-decreasing for l�w* for some w*. For simplicity we
limit ourselves to the case where g is strictly convex. We can take g+(z)=0
for z�w*, so that

g&(z)=|
z

w*
min(0, a(v) } n) dv+ g(w*), z # R.

Let us consider three cases, according to the location of w1 and w2 with
respect to w*. Recall that the set of solutions to (BLN) for the data w is
[w*, +�[ if w�w*, and [w] _ [w$, +�[ if w<w*, where w$ is the solu-
tion to

g(w$)= g(w), w$>w*.

Fifth Step. g Convex, w1<w2�w*. Denote by w~ and w~ $ the solu-
tions to

g(w~ )= g(w~ $)= 1
2 ( g(w1)+ g(w2)), w1<w~ <w2<w*<w~ $.

v Let us first look for the states u�w* satisfying the condition (K).
Then m1 and m2 are both smaller than w*. Thus (21)(ii) is equivalent to
g� &= g(u), i.e., u= g&1( g� &)=w~ . Then (22)(ii) holds. And so, w~ is the only
solution to (K) smaller than w*.

v Let us now look for the states u>w* satisfying the condition (K).
Then m1 and m2 are given respectively by m1=w1 and m2=u. The condi-
tion (21)(ii) is equivalent to

g(u)� 1
2 ( g(w1)+ g(w2))

i.e., u�w~ $. The condition (22)(i) is then satisfied. Hence, the set of solu-
tions to (K) bigger than w* is [w~ $, +�[.

Consequently, the set of solutions to (K) in the case where w1<
w2�w* is the set of solutions to (BLN) for the data w~ . Moreover, the
definition of w~ by

g(w~ )= 1
2 ( gw1)+ g(w2)), w1<w~ <w2

can also be expressed by

g&(w~ )= 1
2 ( g&(w1)+ g&(w2))
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i.e., the equality of inward fluxes

|
a(v) } n<0

a(v) } n/w~ (v) dv=|
a(v) } n<0

a(v) } nf� (v) dv.

Sixth Step. g Convex, w1�w*�w2 . In this case,

G(w1 , w2 , l)= 1
2 ( g(w*)& g(w1)), l�w1

G(w1 , w2 , l)= 1
2 ( g(w1)+ g(w*))& g(l), l<w1 .

Denote by w~ and w~ $ the solutions to

g(w~ )= g(w~ $)= 1
2 ( g(w1)+ g(w*)), w1<w~ <w*�w~ $.

v Let us first look for u�w* satisfying the condition (K). The condi-
tion (22)(ii) is then

g(u)� 1
2 ( g(w1)+ g(w*))

i.e., u�w~ $. The condition (22)(i) is then satisfied.

v Let us now look for u # [w1 , w*] satisfying the condition (K).
Taking successively w1<l<u and u<l<w2 in (21)(i), we get g(u)=
1
2 ( g(w1)+ g(w*)), i.e., u=w~ . Moreover, the condition (22)(ii) is satisfied.
Hence u=w~ is the only solution to (K) in [w1 , w*].

v It remains to look for u<w1 satisfying the condition (K). Taking
l=w* in (21)(i), we get g(u)� 1

2 ( g(w1)+ g(w*)), which is not possible
since

1
2 ( g(w1)+ g(w*))< g(w1)< g(u).

Thus there is no solution u<w1 .

Hence, the set of solutions to (K) in the case where w<w*�w2 is
[w~ ] _ [w~ $, +�[, i.e., the set of solutions to (BLN) for the data w=w~ .
Moreover, the definition of w~ by

g(w~ )= 1
2 ( g(w1)+ g(w*)), w1<w~ <w*

can also be expressed by

g&(w~ )= 1
2 ( g&(w1)+ g&(w2))
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i.e., the equality of the inward fluxes

|
a(v) } n<0

a(v) } n/w~ (v) dv=|
a(v) } n<0

a(v) } nf� (v) dv.

Seventh Step. g Convex, w*�w1<w2 . A similar computation as in
the previous steps proves easily that the set of solutions to the (K) condi-
tion is [w*, +�[, which is the set of solutions to the (BLN) condition for
a data w~ �w*. Such data w~ �w* can also be defined by the condition

g&(w~ )= g(w*)

i.e.,

|
a(v) } n<0

a(v) } n/w~ (v) dv=|
a(v) } n<0

a(v) } nf� (v) dv.

Eight Step. g Concave. We do not detail this case which has to be
studied in 3 separate cases according to the location of w1 and w2 to the
possible maximum of g, w*. The conclusions are similar to those of the
convex case. K

6. CONCLUSION

In this paper we have studied the fluid limit of some kinetic model for
scalar conservation laws. In the case of non-degenerated flux and kinetic
data at equilibrium at the boundary, we recover the classical condition of
Bardos, Leroux and Nedelec. If the data at the boundary is not at equi-
librium we obtain new informations. This is connected with more general
studies of boundary layers (see ref. 7).
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